GANs for Biological Image Synthesis

Anton Osokin

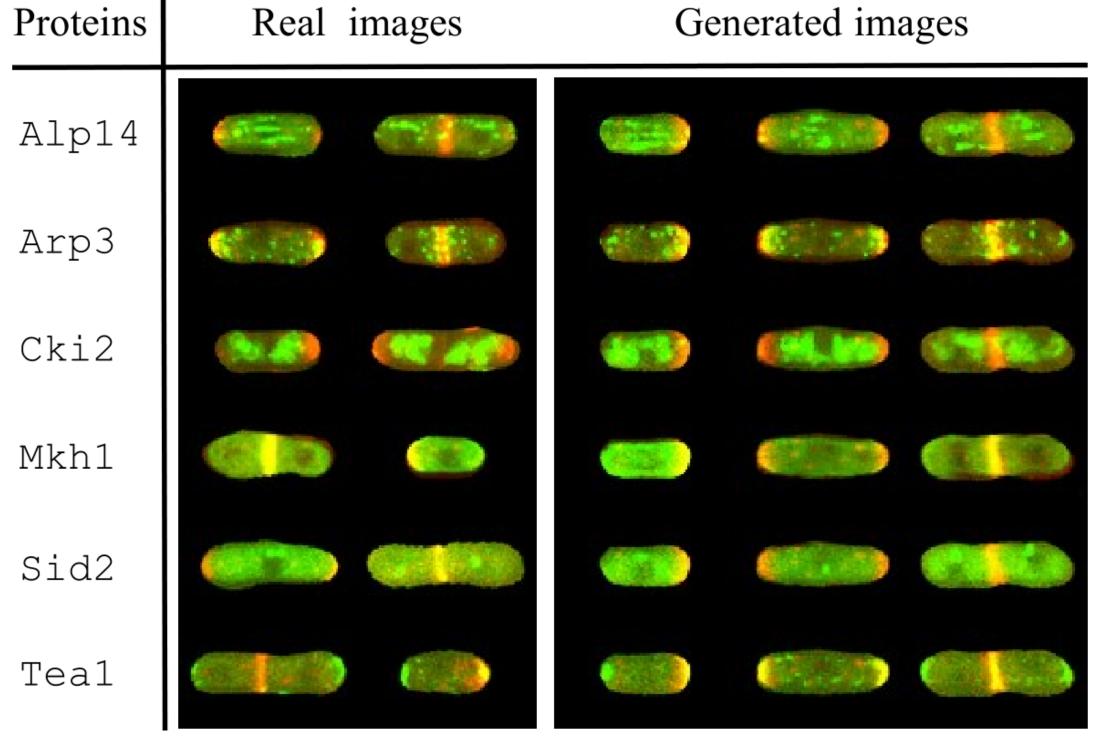
Anatole Chessel

INRIA/ENS, France NRU HSE, Russia

École Polytechnique, France

Motivation

Generative Adversarial Networks (GANs) [1] to synthesize biological images (fission yeast cells imaged by fluorescence microscopy).



LIN dataset

LIN dataset [2] contains 170,000 cell images each with two fluorescent tags: red and green.

Red shows Bsg4 protein which shows the area of active growth. Green shows one of other 41 proteins of interest.

There is technology to image up to 3-5 channels at a time, but more than 2 is hard and expensive.

Goal

- Synthesize multi-channel images given 2-channel data
- Capture randomness of the green given the red
- Learn a latent space to interpolate between cells \bullet
- Quantitatively measure quality

Approach

- Separable generator instead of conditioning
- WGAN-GP [3] to avoid mode collapse
- Star-shaped multi-channel model trained on two channel data
- Neural network two-sample test (C2ST) [4] to measure quality
- Interpolation between GAN noise vectors

Rafael Carazo-Salas

University of Bristol, UK

Federico Vaggi

ENS, France Amazon, USA

Separable generator

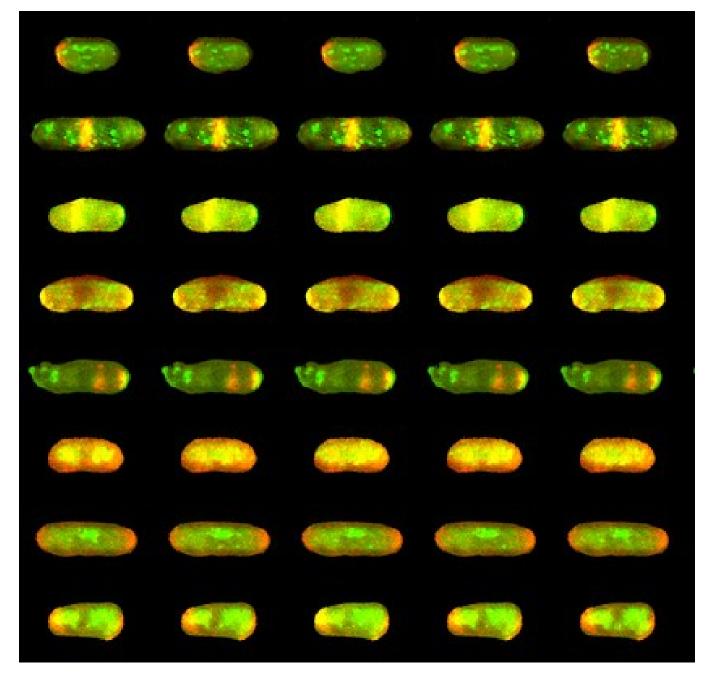
Based on DCGAN [5] Red and green noise Red and green towers

Star-shaped model

Adaptation for multiple greens

	Green 2		
Green 1		Green 3	
	Red		
Green 6	Groop E	Green 4	
	Green 5		

Fighting mode collapse **Separable Wasserstein GAN Separable GAN**



Interpolating cell growth cycle

Bgs4	Alp14	Arp3	Cki2	Mkh1	Sid2	Teal
		¢ 😼	17 A			
		6 18	98. *			
	a trave					
		6. 2 3	200 940			
			S 19175			
				A. 4.		

Quantitative evaluation: two-sample test

With a model fixed, one trains a network to classify real vs fake. Test accuracy is taken as a similarity measure.

Correlation of C2ST and quality

	Steps	C2ST	
Z	1k	$_{0.1}^{11.0\pm}$	
sep. GAN	5k	$\begin{array}{c} 6.7\pm \\ 0.1 \end{array}$	
Se	50k	$\begin{array}{c} 3.2\pm \\ 0.1 \end{array}$	
N-GP	1k	$\begin{array}{c} 6.0\pm \\ 0.1 \end{array}$	
WGAN-GP	5k	$_{0.1}^{2.2\pm}$	
	50k	$egin{array}{c} 1.6\pm\ 0.1 \end{array}$	
Real	-	-0.7 ± 0.6	

C2ST for real vs real of different classes

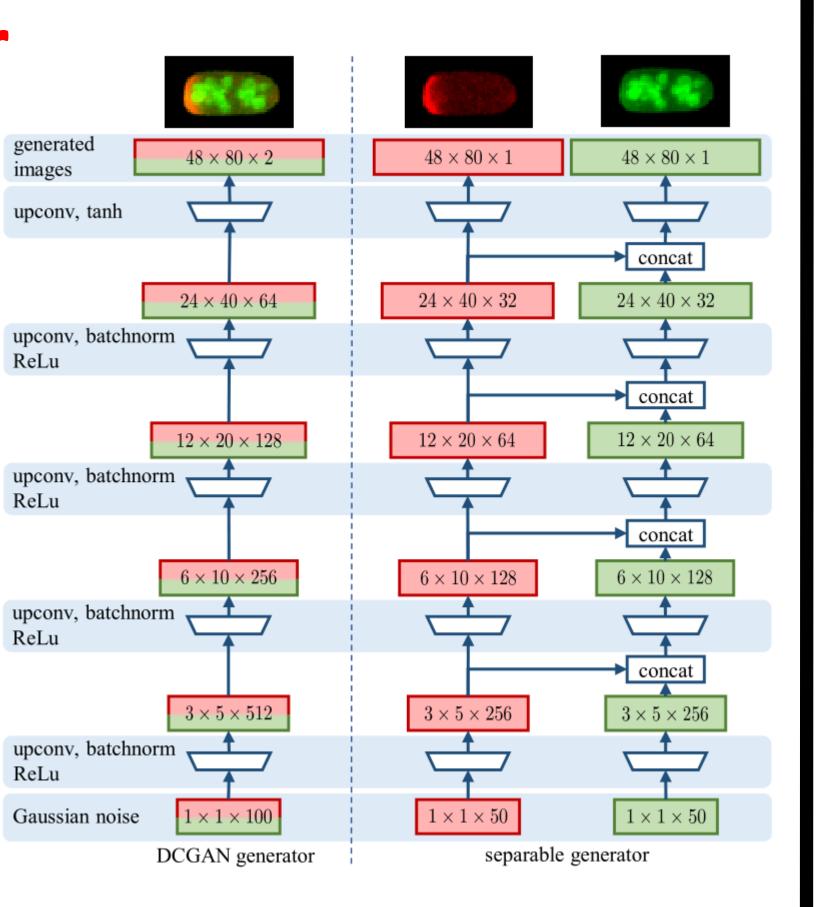
test	Alp14	Arp3	Cki2	Mkh1	Sid2	Teal	Fiml	Tea4
Alp14	0.1 ± 0.2	12.5 ± 0.3	8.1 ± 0.3	12.5 ± 0.5	9.5 ± 0.2	10.9 ± 0.3	15.6 ± 0.3	11.4 ± 0.3
Arp3	14.4 ± 0.2	0.8 ± 0.4	16.2 ± 0.2	11.5 ± 0.4	20.5 ± 0.3	13.2 ± 0.2	3.7 ± 0.2	18.3 ± 0.3
Cki2	8.6 ± 0.2	15.9 ± 0.3	-0.2 ± 0.3	13.7 ± 0.4	12.0 ± 0.3	15.8 ± 0.3	18.5 ± 0.4	16.0 ± 0.5
Mkh1	12.3 ± 0.4	12.2 ± 0.6	13.6 ± 0.3	-0.2 ± 0.4	12.4 ± 0.6	13.3 ± 0.6	15.1 ± 0.5	14.9 ± 0.8
Sid2	9.0 ± 0.3	19.5 ± 0.4	11.8 ± 0.5	13.4 ± 0.9	-0.6 ± 0.3	12.6 ± 0.3	23.9 ± 0.4	7.7 ± 0.6
Teal	11.3 ± 0.3	11.5 ± 0.5	15.9 ± 0.3	14.4 ± 0.6	13.1 ± 0.1	$\textbf{-0.1}\pm0.4$	14.5 ± 0.5	$\textbf{6.9} \pm \textbf{0.5}$
Fiml	16.3 ± 0.2	$\textbf{2.8} \pm \textbf{0.3}$	18.4 ± 0.2	14.5 ± 0.3	23.4 ± 0.3	15.1 ± 0.2	-0.2 ± 0.3	20.8 ± 0.5
Tea4	9.7 ± 0.6	15.8 ± 0.7	14.0 ± 0.9	13.9 ± 0.9	6.2 ± 0.4	$\textbf{5.9} \pm \textbf{0.3}$	19.5 ± 0.7	-0.5 ± 0.7

C2ST for evaluating different conditional WGAN-GP

	real images	one-class non-separable	one-class separable	multi-channel non-separable	multi-channel separable	star-shaped
separable red/green	-	X	\checkmark	X	1	\checkmark
class conditioned	-	X	×	\checkmark	\checkmark	\checkmark
Alp14	0.1 ± 0.2	0.6 ± 0.3	1.2 ± 0.2	3.2 ± 0.4	2.3 ± 0.5	$\textbf{0.6} \pm \textbf{0.3}$
Arp3	0.8 ± 0.4	1.2 ± 0.3	2.4 ± 0.4	3.2 ± 0.4	4.2 ± 0.4	2.1 ± 0.5
Cki2	-0.2 ± 0.3	0.3 ± 0.5	1.0 ± 0.3	2.5 ± 0.3	3.6 ± 0.5	1.2 ± 0.3
Mkh1	-0.2 ± 0.4	0.8 ± 0.6	0.5 ± 0.4	4.6 ± 0.5	6.6 ± 0.5	2.4 ± 0.6
Sid2	-0.6 ± 0.3	0.8 ± 0.4	1.0 ± 0.5	4.5 ± 0.5	3.2 ± 0.6	1.1 ± 0.6
Teal	-0.1 ± 0.4	0.8 ± 0.5	0.8 ± 0.5	4.4 ± 0.3	2.8 ± 0.5	1.1 ± 0.4
6 proteins	-0.1 ± 0.2	0.8 ± 0.2	1.1 ± 0.2	3.7 ± 0.1	3.8 ± 0.2	1.4 ± 0.1

References

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.Warde-Farley, S.Ozair, A.Courville, Y. Bengio. Generative adversarial nets. In NIPS, 2014 [2] J. Dodgson, A. Chessel, F. Vaggi, M. Giordan, M. Yamamoto, K. Arai, M. Madrid, M. Geymonat, J. F. Abenza, J. Cansado, M. Sato, A. Csikasz-Nagy, and R. E. Carazo-Salas. Reconstructing regulatory pathways by systematically mapping protein localization interdependency networks. bioRxiv:11674, 2017 [3] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. Improved training of Wasserstein GANs. arXiv:1704.00028v2, 2017. [4] D. Lopez-Paz and M. Oquab. Revisiting classifier two-sample tests. In ICLR, arXiv:1610.06545v3, 2017 [5] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR, arXiv:1511.06434v2, 2016

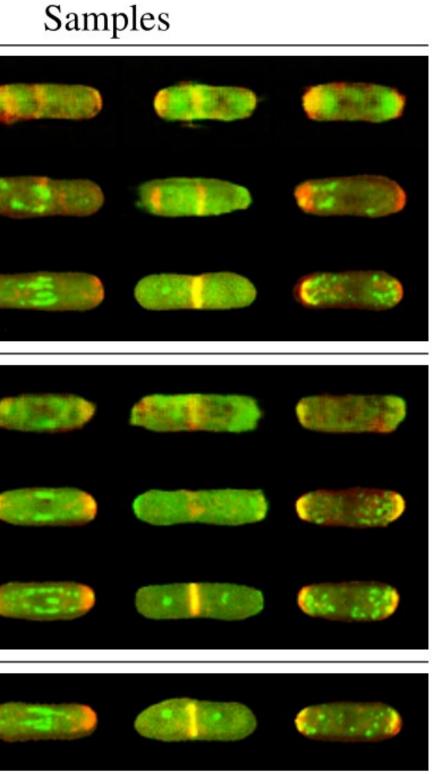


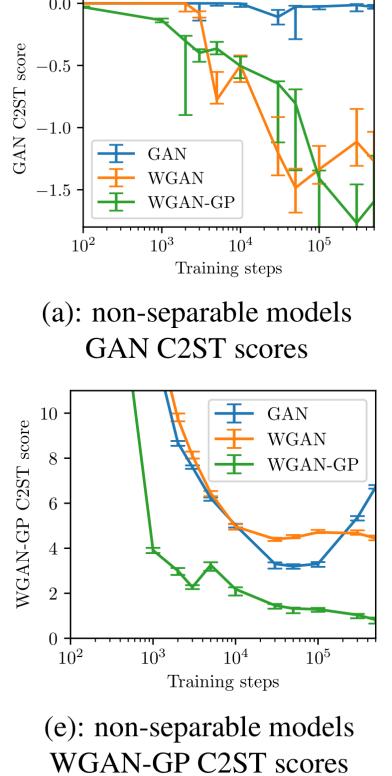


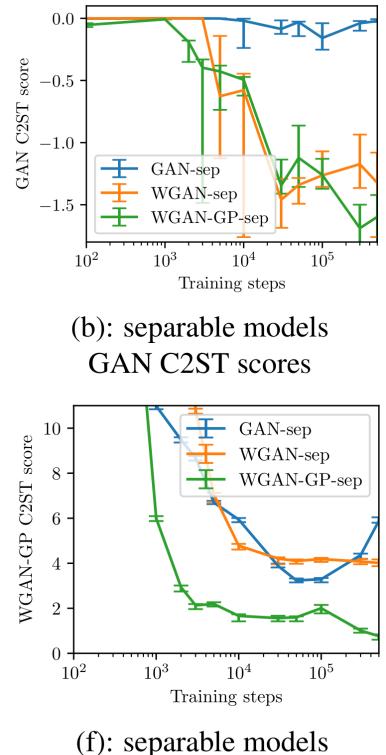
École Normale Supérieure

University of BRISTOL

Comparing different C2ST







WGAN-GP C2ST scores