On Structured Prediction Theory with Calibrated Convex Surrogate Losses

 $\mathcal{R}_{\Phi}(\boldsymbol{f}) := \mathbf{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathcal{D}} \Phi(\boldsymbol{y}, \boldsymbol{f}(\boldsymbol{x}))$ Convex => optimization guarantees! Examples: structured SSVM, conditional likelihood

Simon Lacoste-Julien

MILA and DIRO, Université de Montréal, Canada **Theory for Structured Prediction –**

Non-convex => no guarantees! Comparison with prior work:

PAC-Bayes bounds

- Consistent, but not convex
- No provable optimization guarantees

Rademacher complexity bounds

- Convex, but not consistent
- No provable optimization guarantees

Input-output kernel regression

- Convex, consistent
- Exponential constants in sample complexity bounds

• This work

- Consistency
- Convex: efficient optimization
- No exponential constants

Calibration Functions

Calibration function connects the actual and surrogate risks

 $H(\text{excess of actual } \mathcal{R}_L) \leq \text{excess of surrogate } \mathcal{R}_{\Phi}$

Calibration functions can characterize **consistency** ($H(\varepsilon) > 0, \varepsilon > 0$)

Constraints ($f = F\theta$) on the set of scores influence H.

- Tight constraints increase H
- Can break consistency
- Good choice: span(L)

Optimization Accuracy

Calibration functions are not sufficient because

- scale is arbitrary defined
- no connection to the actual optimization
- no notion of sample complexity
- **Online SGD convergence rate:** $E[\mathcal{R}_{\Phi}(\bar{f}^{(N)})] \mathcal{R}^{*}_{\Phi,\mathcal{F}} \leq \frac{2DM}{\sqrt{N}}$

 \bigwedge We need structure of F and L to run SGD efficiently

In expectation, online SGD needs $N^* := \frac{4D^2M^2}{100}$ iterations to have $\mathbf{E}[\mathcal{R}_L(\overline{\mathfrak{f}}^{(N)})] < \mathcal{R}_{L,\mathcal{F}}^* + \varepsilon$

(McAllester, 2007) (McAllester&Keshet, 2011) (London et al., 2016)

(Cortes et al., 2016)

(Ciliberto et al., 2016) (Brouard et al., 2016)

advantages

(a): Hamming loss

 $H^2(\varepsilon)$

Upper bound on the

solution norm

calibration function

------ no constraints

0.4

(b): Mixed loss

Upper bound on the expected squared

norm on the stochastic gradient

Analysis for Quadratic Surrogate

- Computing calibi
- Compute only for

 $arPhi_{ ext{quad}}(oldsymbol{f},oldsymbol{y}):=$

Hardness result:

 $H(\varepsilon) \leq \frac{\varepsilon^2}{2k}$

• Easiness result: then the calibrat

 $H(\varepsilon) \geq \frac{1}{2k \, \mathrm{max}}$

Depends on proj

Some exact valu

- 0-1 loss
- Hamming lo
- Block 0-1 los
- choice of constra

Example: mixed

$$H(\varepsilon) = \begin{cases} \frac{O(1)}{4b} \\ \mathbf{0}, \end{cases}$$

- Computing the S
 - 0-1 loss
 - Hamming Ic
 - Block 0-1 log

References

In Predicting Structured Data. MIT Press, 2007.

structured prediction. In NIPS, 2016.

ration functions is difficult in general.		
or a special "quadratic" surrogate		
$= \frac{1}{2k} \ \boldsymbol{f} + L(:, \boldsymbol{y}) \ _{2}^{2} = \frac{1}{2k} \sum_{c=1}^{k} (f_{c} + L(c, \boldsymbol{y}))^{2}, \boldsymbol{f} = F \boldsymbol{\theta}$		
upper bound (pseudo-metric losses, no constraints)		
A Exponentially small!		
lower bound for all losses: if there are good constraints tion function is not small		
$\frac{\varepsilon^2}{\operatorname{ax}_{i\neq j} \ P_{\mathcal{F}} \Delta_{ij}\ _2^2} \ge \frac{\varepsilon^2}{4k} \qquad \qquad Ca$	n be large!	
jections on span(F) of "bad direction" $\Delta_{ij} = \mathbf{e}_i - \mathbf{e}_j \in \mathbb{R}^k$		
les: (with scores in $\operatorname{span}(L)$)		
$H(\varepsilon) = \frac{\varepsilon^2}{4k}$	<u>A</u> Exponentially small!	
oss (T variables) $H(\varepsilon) = \frac{\varepsilon^2}{8T}$	Large!	
ss (<i>b</i> blocks) $H(\varepsilon) = \frac{\varepsilon^2}{4b}$	Large!	
aints can break consistency (for small ε), but make learning much faster		
loss $L_{01,b,\eta} := \eta L_{01} + (1 - \eta) L_{01,b}$, scores in $\operatorname{span}(L_{01,b})$		
$(\varepsilon - \frac{\eta}{2})^2, \frac{\eta}{2} \le \varepsilon \le 1,$ Large! $0 \le \varepsilon \le \frac{\eta}{2}$ \bigwedge Non-co	nsistent!	
SGD constants:		
DM = O(k)	↑ Exponentially large!	

	DM =	$O(\kappa)$
oss (T variables)	DM =	$O(\log_2^3 k)$
oss (b blocks)	DM =	O(b)

/: Cxponentially large: Small! Small!

- (McAllester, 2007) McAllester, D. Generalization bounds and consistency for structured labeling.
- (McAllester&Keshet, 2011) McAllester, D. and Keshet, J. Generalization bounds and consistency for latent structural probit and ramp loss. In NIPS, 2011.
- (London et al., 2016) London, B., Huang, B. and Getoor, L. Stability and generalization in structured prediction. Journal of Machine Learning Research (JMLR), 17(222):1–52, 2016.
- (Cortes et al., 2016) Cortes, C., Kuznetsov, V., Mohri, M. and Yang, S.. Structured prediction theory based on factor graph complexity. In NIPS, 2016.
- (Ciliberto et al., 2016) Ciliberto, C., Rudi, A. and Rosasco, L. A consistent regularization approach for
- (Brouard et al., 2016) Brouard, C., Szafranski, M. and d'Alché-Buc, F. Input output kernel regression: Supervised and semi-supervised structured output prediction with operator-valued kernels. Journal of Machine Learning Research (JMLR), 17(176):1–48, 2016.