On Structured Prediction Theory with
Calibrated Convex Surrogate Losses
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We focus on theoretical aspects of structured prediction and provide

some insights how to build methods with guarantees. We want Comparison with prior work:

 Computing calibration functions is difficult in general.
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consistency guarantees and learning (optimization) complexity : . PAC-Bayes bounds McAllester, 2007) . Compute only for a special “quadratic” :urrogate
Contributions: | * Consistent, but not convex (McAllester&Keshet, 2011) | > ,
 Compute tight bounds on calibration function to relate convex | * No provable optimization guarantees (London et al., 2016) Pavad (F,9) 1= 2l + LG w2 = o 2:1(][6 FHewR T =R
[ =
surrogate risk to true risk : * Rademacher complexity bounds (Cortes et al., 2016) * Hardness result: upper bound (pseudo-metric losses, no constraints)
* Use SGD analysis to get learning complexity : * Convex, but not consistent H(e) < &2 A\ Exponentially small!
* Monitor carefully exponential constants (vs. prior work) : * No provable optimization guarantees | — 2k | |
» Formalize intuition that learning is easier for some losses: . * Easiness result: lower bound for all losses: if there are good constraints
structured losses vs. 0-1 loss ,' * Input-output kernel regression (Ciliberto et al., 2016) then the calibration function is not small
| / * Convex, consistent (Brouard et al., 2016) i i |
N e o o o o o e e e - ’ H(E) > 2% maxi;é:HP]:Aing > S_k Can be large'

Structured Prediction

Structured prediction = ML for predicting structured objects.
Image segmentation

Handwriting recognition (OCR)
A8LUZaY » command

Examples

Key differences from binary classification:
 Exponential number of classes
* Cost-sensitive prediction — not all mistakes are equal

Structured prediction setup

e Giveninput = #8uus"gN  predict ¥ = command

* k =number of labels (exponential in sequence length)
* Loss L € R*** (e.g., L(7,y)is the Hamming distance)
* Model = score function f(x) € R"

* Prediction: argmax f,(x) need inference (e.g., Viterbi)
y=1,....k
* Non-parametric: scores defined by universal kernels on

* An optimal predictor: f*(x) = —Lgq, with q, = P(y | )
* Loss matrix rank (connected with complexity):

* 0-1loss: dim(span(L)) =k

* Hamming loss: dim(span(L)) ~ log, (k)

Learning in structured prediction
Learning = minimize the population risk

RL(f) = E@y)~p L(argmax(f(m)),y) /N Non-convex =>
no guarantees!

Instead, minimize the surrogate risk
Ra(f) := E (g y)~D d(y, f(x)) Convex =>optimization guarantees!
Examples: structured SSVM, conditional likelihood

* Exponential constants in sample complexity bounds T ) L .
Depends on projections on span(F) of “bad direction” A;; =e; —e; € R

* This work

* Consistency * Some exact values: (with scores in span(L) )
 Convex: effici.ent optimization advantages e 0-1 loss H(e) = ﬁ & Exponentially small!
* No exponential constants . . 2

* Hamming loss (T variables) H(s) = £~ Large!

* Block 0-1loss (b blocks)  H(e) = = Large!

Calibration Functions

* choice of constraints can break consistency (for small g),

Calibration function connects the actual and surrogate risks but make learning much faster
H (excess of actual Rp) < excess of surrogate Rg Example: mixed 0SS Lo, . := nLo; + (1 — 1) Loy Scores in span(Loyp)
: : : : : O(1) 2 |
Calibration functions can characterize consistency (H(s) > 0, £ > 0) Hi(e) = o E—g)hg el Large:
0, 0<e<? /\ Non-consistent!

Constraints ( f = F'@ ) on the set of scores influence H.

o T|ght COnStra|ntS |ncrease H ——— no constraints ——— no constraints ° CompUtlng the SGD ConStantS:
— tight constraints —tight constraints
» Can break consistency > P * 0-1loss DM =0(k) /N Exponentially large!
* Good choice: span(L) __/// * Hamming loss (T variables) par = O(log? k) Small!
0 0.5 1 0 - 0.2 0.l4
* Block 0-1 loss (b blocks _ Small!
(a): Hammging loss (b): Mixegd loss ( ) DM = O(b)
Optimization Accuracy References
Calibration functions are not sufficient because (McAllester, 2007) McAllester, D. Generalization bounds and consistency for structured labeling.
) ] ] In Predicting Structured Data. MIT Press, 2007.
* scale is arbitrary defined Upper bound on the expected squared o |
. o _ norm on the stochastic gradient (McAllester&Keshet, 2011) McAllester, D. and Keshet, J. Generalization bounds and consistency for
o .
no connection to the actual optimization Uoper bound on the latent structural probit and ramp loss. In NIPS, 2011.
* no notion of sample complexity solution norm\‘ / (London et al., 2016) London, B., Huang, B. and Getoor, L. Stability and generalization in structured
Online SGD convergence rate: E[Rgp(f(N))] _R* _ < 2DM prediction. Journal of Machine Learning Research (JMLR), 17(222):1-52, 2016.
[ ] ¢7F —_—
\ VN (Cortes et al., 2016) Cortes, C., Kuznetsov, V., Mohri, M. and Yang, S.. Structured prediction theory

averaged iterate

o based on factor graph complexity. In NIPS, 2016.
/\ We need structure of F and L to run SGD efficiently

(Ciliberto et al., 2016) Ciliberto, C., Rudi, A. and Rosasco, L. A consistent regularization approach for

structured prediction. In NIPS, 2016.

In expectation, online SGD needs N* := 4D22M2 iterations (Brouard et al., 2016) Brouard, C., Szafranski, M. and d’Alché-Buc, F. Input output kernel regression:

to have E[R (f(N) )] < RY¥ -4+ ¢ H=(e) Supervised and semi-supervised structured output prediction with operator-valued kernels. Journal of
L LF

\ calibration function Machine Learning Research (JMLR), 17(176):1-48, 2016.




