
 

• Computing calibration functions is difficult in general. 

• Compute only for a special “quadratic” surrogate 

 

• Hardness result: upper bound (pseudo-metric losses, no constraints) 

 

• Easiness result: lower bound for all losses: if there are good constraints 
then the calibration function is not small 

 

  Depends on projections on span(F) of “bad direction” 

• Some exact values:     (with scores in                 ) 

• 0-1 loss 

• Hamming loss (T variables) 

• Block 0-1 loss (b blocks) 

 

• choice of constraints can break consistency (for small ε), 
                                  but make learning much faster 
  Example: mixed loss                                                    , scores in 

 
 

 

• Computing the SGD constants: 

• 0-1 loss 

• Hamming loss (T variables) 

• Block 0-1 loss (b blocks) 
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Summary Theory for Structured Prediction Analysis for Quadratic Surrogate 

Structured prediction = ML for predicting structured objects.  
 
 

• Given input      =                         predict     =  

•     = number of labels (exponential in sequence length)  

• Loss                     (e.g.,              is the Hamming distance) 

• Model = score function  

• Prediction:                                need inference (e.g., Viterbi) 

• Non-parametric: scores defined by universal kernels on  

• An optimal predictor:                               with   

• Loss matrix rank (connected with complexity): 

• 0-1 loss:  

• Hamming loss:  

Structured prediction setup 

Learning in structured prediction 

Learning = minimize the population risk 
 
 
Instead, minimize the surrogate risk 
 

Examples: structured SSVM, conditional likelihood 
 

Non-convex => 
no guarantees! 

Convex => optimization guarantees! 

Image segmentation 
Handwriting recognition (OCR) 
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Key differences from binary classification: 
• Exponential number of classes 
• Cost-sensitive prediction – not all mistakes are equal 

 

Comparison with prior work: 

• PAC-Bayes bounds  
•  Consistent, but not convex  
•  No provable optimization guarantees 

• Rademacher complexity bounds 
•  Convex, but not consistent 
•  No provable optimization guarantees 

• Input-output kernel regression  
•  Convex, consistent  
•  Exponential constants in sample complexity bounds 

• This work 
•  Consistency 
•  Convex: efficient optimization 
•  No exponential constants 

(McAllester, 2007) 
(McAllester&Keshet, 2011) 
(London et al., 2016) 

(Cortes et al., 2016) 

(Ciliberto et al., 2016) 
(Brouard et al., 2016) 

Calibration Functions 

Calibration function connects the actual and surrogate risks 
 

 
Calibration functions can characterize consistency (                             ) 
 
Constraints (               ) on the set of scores influence H. 
• Tight constraints increase H 

• Can break consistency 
• Good choice: 

 
 

Optimization Accuracy 
Calibration functions are not sufficient because 
• scale is arbitrary defined 
• no connection to the actual optimization 
• no notion of sample complexity 
Online SGD convergence rate: 
 
       We need structure of F and L to run SGD efficiently 
 

In expectation, online SGD needs                          iterations  
to have 

averaged iterate 

Upper bound on the 
solution norm 

Upper bound on the expected squared 
norm on the stochastic gradient 

Exponentially small! 

Can be large! 

Non-consistent! 

Large! 

Large! 

advantages 

calibration function 

We focus on theoretical aspects of structured prediction and provide 
some insights how to build methods with guarantees. We want  
consistency guarantees and learning (optimization) complexity 

    Contributions: 
• Compute tight bounds on calibration function to relate convex 

surrogate risk to true risk 
• Use SGD analysis to get learning complexity 
• Monitor carefully exponential constants (vs. prior work) 
• Formalize intuition that learning is easier for some losses:  
                                                                     structured losses vs. 0-1 loss 

Large! 

Exponentially small! 

Small! 

Small! 

Exponentially large! 


